Rabu, 11 Juni 2014

BAB 9 ANALISIS REGRESI & ANALISIS KORELASI





A.    ANALISIS REGRESI 

1. PENGERTIAN
 
Analisis regresi dalam statistika adalah salah satu metode untuk menentukan hubungan sebab-akibat antara satu variabel dengan variabel(-variabel) yang lain. Variabel “penyebab” disebut dengan bermacam-macam istilah: variabel penjelas, variabel eksplanatorik, variabel independen, atau secara bebas, variabel X (karena seringkali digambarkan dalam grafik sebagai absis, atau sumbu X). Variabel terkena akibat dikenal sebagai variabel yang dipengaruhi, variabel dependen, variabel terikat, atau variabel Y. Kedua variabel ini dapat merupakan variabel acak (random), namun variabel yang dipengaruhi harus selalu variabel acak. Analisis regresi adalah salah satu analisis yang paling populer dan luas pemakaiannya. Hampir semua bidang ilmu yang memerlukan analisis sebab-akibat boleh dipastikan mengenal analisis ini.

2. KEGUNAAN
Tujuan menggunakan analisis regresi ialah:
-Membuat estimasi rata-rata dan nilai variabel tergantung dengan didasarkan pada nilai variabel bebas.
-Menguji hipotesis karakteristik dependensi
-Untuk meramalkan nilai rata-rata variabel bebas dengan didasarkan pada nilai variabel bebas diluar jangkaun sample.
 
3. ANALISIS REGRESI
3.1 Analisis Regresi Berganda
Regresi berganda seringkali digunakan untuk mengatasi permasalahan analisis regresi yang melibatkan hubungan dari dua atau lebih variabel bebas. Pada awalnya regresi berganda dikembangkan oleh ahli ekonometri untuk membantu meramalkan akibat dari aktivitas-aktivitas ekonomi pada berbagai segmen ekonomi. Misalnya laporan tentang peramalan masa depan perekonomian di jurnal-jurnal ekonomi (Business Week, Wal Street Journal, dll), yang didasarkan pada model-model ekonometrik dengan analisis berganda sebagai alatnya. Persamaan regresi linear berganda sebagai berikut:

Y’ = a+b1X1+b2X2+….+ bnXn

Keterangan:
Y’ : variabel dependen (nilai yag diprediksikan)
X1 dan X2 : variabel independen
a : konstanta
b : koefisien regresi(nilai peningkatan/penurunan)
contoh kasus:
Seorang peneliti ingin mengetahui pengaruh dari tinggi badan terhadap berat badan. Untuk kebutuhan penelitian tersebut diambil sampel secara acak sebanyak 10 orang untuk diteliti. Hasil pengumpulan data diketahui data sebagai berikut :

Berdasarkan data tersebut di atas :

Hitunglah nilai a dan b untuk persamaan regersi linier sederhana. Jika hipotesis penelitian menyatakan bahwa “tinggi badan seseorang berpengaruh terhadap berat badan seseorang”, ujilah hipotesis tersebut dengan menggunakan Uji T dan Uji F (tingkat keyakinan sebesar 95%). Hitunglah nilai r dan koefisien determinasi. Bagaimana kesimpulannya !

Jawab :

Hipotesis penelitian : Tinggi Badan berpengaruh terhadap Berat Badan Seseorang (karena hanya dikatakan berpengaruh maka menggunakan uji dua arah).

Jika Y : Berat Badan Seseorang dan X : Tinggi Badan Seseorang, maka untuk mendapatkan nilai a dan b untuk persamaan regersi linier sederhana :
Berdasarkan hasil pengolahan data tersebut di atas maka dapat dibuat persamaan regresi linier sederhana : Y = – 73,72041 + 0,819657 X
Untuk menguji hipotesis secara parsial digunakan Uji T, yaitu :

Hipotesis Statistik adalah Ho : b = 0 dan Ha : b ≠ 0 (disebut uji dua arah)
Nilai T hitung adalah : b/Sb = 0,819657/0,05525673 = 14,833613932638 = 14,834
Nilai T tabel dengan df : 10 – 2 = 8 dan ½ α = 2,5% (uji dua arah) sebesar ± 2,306

Karena nilai T hitung lebih besar dari pada T tabel atau 14,834 > 2,306 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima (dapat dikatakan signifikan secara statistik).
Sedangkan untuk menguji secara serempak digunakan Uji F, yaitu diperoleh F hitung = 31.874,98 dan Untuk nilai F tabel dengan df : k – 1 ; n – k = 1 ; 8 dan α : 5% sebesar 5,32. Karena nilai F hitung lebih besar dari F tabel atau 31.874,98 > 5,32 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima.

3.2 Analisis Regresi Sederhana

Regresi Linier Sederhana Regresi linier sederhana bertujuan mempelajari hubungan linier antara dua variabel. Dua variabel ini dibedakan menjadi variabel bebas (X) dan variabel tak bebas (Y). Variabel bebas adalah variabel yang bisa dikontrol sedangkan variabel tak bebas adalah variabel yang mencerminkan respon dari variabel bebas.

Statistik regresi dapat didapatkan dengan berbagai cara, diantaranya ialah dengan menggunakan metode tangan bebas dan metode kuadrat terkecil. Dengan menggunakan metode kuadrat terkecil maka nilai a dan b dapat langsung dicari menggunakan rumus di bawah ini:
Contoh:Diketahui peubah nilai skor tes masuk (X) dengan nilai ekonomi (Y) sebagai berikut:

Mahasiswa Skor tes (X) Nilai ekonomi (Y)
1 65 65
2 50 74
3 55 76
4 65 90
5 55 85
6 70 87
7 65 94
8 70 98
9 55 81
10 70 91
11 50 76
12 55 74
Berdasarkan data diatas tentukan hubungan matematis antara skor tes masuk dengan nilai ekonomi.

Jawaban:
Sehingga persamaan regresinya ialah:
Y= 30,056 + 0,897 X

B.    ANALISIS KORELASI 

1. PENGERTIAN KORELASI
 
Korelasi merupakan teknik analisis yang termasuk dalam salah satu teknik pengukuran asosiasi / hubungan (measures of association). Pengukuran asosiasi merupakan istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang digunakan untuk mengukur kekuatan hubungan antara dua variabel. Diantara sekian banyak teknik-teknik pengukuran asosiasi, terdapat dua teknik korelasi yang sangat populer sampai sekarang, yaitu Korelasi Pearson Product Moment dan Korelasi Rank Spearman. Selain kedua teknik tersebut, terdapat pula teknik-teknik korelasi lain, seperti Kendal, Chi-Square, Phi Coefficient, Goodman-Kruskal, Somer, dan Wilson.
Pengukuran asosiasi mengenakan nilai numerik untuk mengetahui tingkatan asosiasi atau kekuatan hubungan antara variabel. Dua variabel dikatakan berasosiasi jika perilaku variabel yang satu mempengaruhi variabel yang lain. Jika tidak terjadi pengaruh, maka kedua variabel tersebut disebut independen.
Korelasi bermanfaat untuk mengukur kekuatan hubungan antara dua variabel (kadang lebih dari dua variabel) dengan skala-skala tertentu, misalnya Pearson data harus berskala interval atau rasio; Spearman dan Kendal menggunakan skala ordinal; Chi Square menggunakan data nominal. Kuat lemah hubungan diukur diantara jarak (range) 0 sampai dengan 1. Korelasi mempunyai kemungkinan pengujian hipotesis dua arah (two tailed). Korelasi searah jika nilai koefesien korelasi diketemukan positif; sebaliknya jika nilai koefesien korelasi negatif, korelasi disebut tidak searah. Yang dimaksud dengan koefesien korelasi ialah suatu pengukuran statistik kovariasi atau asosiasi antara dua variabel. Jika koefesien korelasi diketemukan tidak sama dengan nol (0), maka terdapat ketergantungan antara dua variabel tersebut. Jika koefesien korelasi diketemukan +1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) positif.
Jika koefesien korelasi diketemukan -1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) negatif. Dalam korelasi sempurna tidak diperlukan lagi pengujian hipotesis, karena kedua variabel mempunyai hubungan linear yang sempurna. Artinya variabel X mempengaruhi variabel Y secara sempurna. Jika korelasi sama dengan nol (0), maka tidak terdapat hubungan antara kedua variabel tersebut. Dalam korelasi sebenarnya tidak dikenal istilah variabel bebas dan variabel tergantung. Biasanya dalam penghitungan digunakan simbol X untuk variabel pertama dan Y untuk variabel kedua. Dalam contoh hubungan antara variabel remunerasi dengan kepuasan kerja, maka variabel remunerasi merupakan variabel X dan kepuasan kerja merupakan variabel Y.

2. KEGUNAAN
Pengukuran asosiasi berguna untuk mengukur kekuatan (strength) hubungan antar dua variabel atau lebih. Contoh: mengukur hubungan antara variabel:
-Motivasi kerja dengan produktivitas
-Kualitas layanan dengan kepuasan pelanggan
-Tingkat inflasi dengan IHSG
Pengukuran ini hubungan antara dua variabel untuk masing-masing kasus akan menghasilkan keputusan, diantaranya:
-Hubungan kedua variabel tidak ada
-Hubungan kedua variabel lemah
-Hubungan kedua variabel cukup kuat
-Hubungan kedua variabel kuat
-Hubungan kedua variabel sangat kuat
Penentuan tersebut didasarkan pada kriteria yang menyebutkan jika hubungan mendekati 1, maka hubungan semakin kuat; sebaliknya jika hubungan mendekati 0, maka hubungan semakin lemah.

3. ANALISIS KORELASI
3.1 Analisis Korelasi Parsial
 
Analisis korelasi parsial (Partial Correlation) digunakan untuk mengetahui hubungan antara dua variabel dimana variabel lainnya yang dianggap berpengaruh dikendalikan atau dibuat tetap (sebagai variabel kontrol). Nilai korelasi (r) berkisar antar 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan antara dua variabel semakin kuat, dan sebaliknya. Nilai positif menunjukkan hubungan searah (X naik maka Y naik) dan nilai negatif menunjukkan hubungan terbalik (X naik maka Y turun). Data yang digunakan biasanya berskala interval atau rasio. Menurut Sugiyono (2007) pedoman untuk memberikan interpretasi koefisien korelasi sebagai berikut:

0,00 – 0,199 = sangat rendah
0,20 – 0,399 = rendah
0,40 – 0,599 = sedang
0,60 – 0,799 = kuat
0,80 – 1,000 = sangat kuat
Contoh kasus:
 
Kita mengambil contoh pada kasus korelasi sederhana di atas dengan menambahkan satu variabel kontrol. Seorang mahasiswa bernama Andi melakukan penelitian dengan menggunakan alat ukur skala. Andi ingin meneliti tentang hubungan antara kecerdasan dengan prestasi belajar jika terdapat faktor tingkat stress pada siswa yang diduga mempengaruhi akan dikendalikan. Dengan ini Andi membuat 2 variabel yaitu kecerdasan dan prestasi belajar dan 1 variabel kontrol yaitu tingkat stress. Tiap-tiap variabel dibuat beberapa butir pertanyaan dengan menggunakan skala Likert, yaitu angka 1=sangat tidak setuju, 2=tidak setuju, 3=setuju, dan 4=sangat setuju. Setelah membagikan skala kepada 12 responden didapatlah skor total item-item yaitu sebagai berikut:

Tabel Tabulasi Data (data fiktif)
Subjek Kecerdasan Prestasi Belajar Tingkat Stress

1 33 58 25
2 32 52 28
3 21 48 32
4 34 49 27
5 34 52 27
6 35 57 25
7 32 55 30
8 21 50 31
9 21 48 34
10 35 54 28
11 36 56 24
12 21 47 29 
3.2 Analisis Korelasi Product Moment
Digunakan untuk menentukan besarnya koefisien korelasi jika data yang digunakan berskala interval atau rasio. Rumus yang digunakan:
Contoh kasus:
Seorang mahasiswa melakukan survei untuk meneliti apakah ada korelasi antara pendapatan mingguan dan besarnya tabungan mingguan di P’Qerto.

Untuk menjawab permasalahan tersebut diambil sampel sebanyak 10 kepala keluarga.
Cara melakukan perhitungan manual uji korelasi di atas adalah sebagai berikut:
Asumsi uji korelasi
Sebelum diimplementasi, uji korelasi harus memenuhi serangkaian asumsi, yaitu:
1. Normalitas, artinya sebaran variabel-variabel yang hendak dikorelasikan harus berdistribusi normal.
2. Linieritas, artinya hubungan antara dua variabel harus linier, misalnya ditunjukkan lewat straight-line.
3. Ordinal, artinya variabel harus diukur dengan minimal skala ordinal.
4. Homoskedastisitas, artinya variabilitas skor di variabel Y harus tetap konstan di semua nilai variabel X.

Kriteria Penerimaan Hipotesis
H0 : tidak terdapat korelasi positif antara tabungan dengan pendapatan
Ha : terdapat korelasi positif antara tabungan dengan pendapatan
H0 diterima jika r hitung ≤ r tabel ( , n-2) atau t hitung ≤ ttabel ( , n-2)
Ha diterima jika r hitung > r tabel ( , n-2) atau t hitung > ttabel ( , n-2)
Sampel: 10 kepala keluarga
Data yang dikumpulkan:
Tabungan 2 4 6 6 8 8 9 8 9 10
pendapatan 10 20 50 55 60 65 75 70 81 85

Analisis data:

N Xi Yi Xi^2 Yi^2 XY
1 2 10 4 100 20
2 4 20 16 400 80
3 6 50 36 2500 300
4 6 55 36 3025 330
5 8 60 64 3600 480
6 8 65 64 4225 520
7 9 75 81 5625 675
8 8 70 64 4900 560
9 9 81 81 6561 729
10 10 85 100 7225 850
jumlah 70 571 546 38161 4544

Pengujian hipotesis:
Dengan kriteria r hitung: r hitung (0,981) > r tabel (0,707)
Dengan kriteria t hitung:
t hitung (14,233) > t tabel (1,86)

kesimpulan:karena r hitung > dari r tabel maka Ha diterima, karena t hitung > t tabel maka Ha diterima
“terdapat korelasi positif antara pendapatan dengan tabungan mingguan di P’Qerto”
Pemikiran utama korelasi product momen adalah seperti ini:
1. Jika kenaikan kuantitas dari suatu variabel diikuti dengan kenaikan kuantitas dari variabel lain, maka dapat kita katakan kedua variabel ini memiliki korelasi yang positif. Jika kenaikan kuantitas dari suatu variabel sama besar atau mendekati besarnya kenaikan kuantitas dari suatu variabel lain dalam satuan SD, maka korelasi kedua variabel akan mendekati.
2. Jika kenaikan kuantitas dari suatu variabel diikuti dengan penurunan kuantitas dari variabel lain,maka dapat kita katakan kedua variabel ini memiliki korelasi yang negatif. Jika kenaikan kuantitas dari suatu variabel sama besar atau mendekati besarnya penurunan kuantitas dari variabel lain dalam satuan SD,maka korelasi kedua variabel akan mendekati -1.
3. Jika kenaikan kuantitas dari suatu variabel diikuti oleh kenaikan dan penurunan kuantitas secara random dari variabel lain atau jika kenaikan suatu variabel tidak diikuti oleh kenaikan atau penurunan kuantitas variabel lain (nilai dari variabel lain stabil), maka dapat dikatakan kedua variabel itu tidak berkorelasi atau memiliki korelasi yang mendekati nol.
           Dari pemikiran ini kemudian lahirlah Rumus Korelasi Product Momen Pearson seperti yang sering kita lihat di buku. Ada beberapa rumus yang dapat diacu. Semuanya akan memberikan hasil r yang sama, hanya saja dengan melihatnya kita akan dapat melihat pemaknaan yang berbeda-beda.
Ada beberapa hal yang dapat kita pelajari dari rumus ini :

Rumus pertama :
           Jika setiap subjek yang memiliki nilai X lebih rendah dari meannya, memiliki nilai Y yang juga lebih rendah dari meannya, nilai r akan menjadi positif. Begitu juga jika setiap subjek yang memiliki nilai X lebih tinggi dari meannya, memiliki nilai Y yang lebih tinggi dari meannya. Jika setiap subjek yang memiliki nilai X yang lebih tinggi dari meannya, memiliki nilai Y yang lebih rendah dari meannya maka nilai r akan menjadi negatif. Begitu juga jika tiap subjek yang memiliki nilai X lebih rendah dari meannya memiliki nilai Y yang lebih tinggi dari meannya. Jika tiap nilai X yang lebih tinggi dari meannya terkadang diikuti oleh nilai Y yang lebih tinggi terkadang lebih rendah dari meannya maka nilai r akan cenderung mendekati 0 (nol).

Rumus kedua:
          Dari rumus kedua ini dapat kita simpulkan bahwa nilai korelasi sebenarnya nilai kovarian dari dua variabel x dan y yang distandardkan dengan menggunakan standard deviasi x dan standard deviasi y sebagai denominatornya. Nilai kovarian sangat dipengaruhi oleh satuan skala yang digunakan oleh kedua variabel. Misalnya kita menghitung kovarian dari tinggi badan dengan panjang rambut , pengen tahu apakah tinggi badan berkorelasi dengan panjang rambut. Kita menghitung tinggi badan dan panjang rambut dalam satuan meter. Kemudian kita hitung kovariannya. Setelah itu kita menggunakan data yang sama, hanya mengubah satuannya menjadi centimeter, lalu menghitung kovariannya. Nah kovarian dari hasil perhitungan kedua akan terlihat lebih besar daripada yang pertama. Lebih besar? Ya karena dengan menggunakan satuan centimeter, 1.4 meter akan menjadi 140 centimeter. Jika kita hitung kovariannya, perhitungan pertama akan menghitung dalam skala satuan (1.4, 1.5, dst) sementara perhitungan kedua akan menghitung dalam skala ratusan. Oleh karena itu perlu distandardkan agar data yang sama akan menghasilkan angka yang sama meskipun diubah skalanya.

Rumus ketiga:
           Zx dan Zy itu berbicara mengenai nilai X dan Y dalam satuan SD. Jika nilai X ada di bawah mean dari X maka nilai Zx akan negatif, jika nilai X ada di atas meannya maka nilai Zx akan positif. Begitu juga dengan Y. Seperti pada rumus pertama, jika Zx dan Zy sepakat (keduanya positif atau negatif) maka nilai r akan positif. Jika Zx dan Zy berlawanan (jika yang satu positif yang lain negatif) maka nilai r akan negatif. Nah misalnya ada seratus subjek memiliki nilai X dan Y. Lalu kita hitung satu-satu nilai Z dari X dan Y untuk tiap subjek. Tentu saja ada beberapa yang sangat sepakat yang lain agak sepakat yang beberapa berlawanan. Kemudian nilai-nilai Z ini dijumlahkan sehingga jika yang sepakat lebih banyak akan menghasilkan angka positif. Kalo yang berlawanan lebih banyak akan menghasilkan angka negatif. Kemudian hasil penjumlahan ini dicari rata-ratanya. Jadi bisa dibilang nilai r itu akan menggambarkan rata-rata keadaan X dan Y dari semua subjek dalam kelompok.

SUMBER : 
 http://fariidaelf.wordpress.com/materi-kuliah/regresi- korelasi/

BAB 8 ANALISIS VARIANSI




  1. Analisi Variansi
Analisis variansi adalah suatu prosedur untuk uji perbedaan mean beberapa populasi. Konsep analisis variansi didasarkan pada konsep distribusi F dan biasanya dapat diaplikasikan untuk berbagai macam kasus maupun dalam analisis hubungan antara berbagai varabel yang diamati. Dalam perhitungan statistik, analisis Variansi sangat dipengaruhi asumsi-asumsi yang digunakan seperti kenormalan dari distribusi, homogenitas variansi dan kebebasan dari kesalahan.
Asumsi kenormalan distribusi memberi penjelasan terhadap karakteristik data setiap kelompok. Asumsi adanya homogenitas variansi menjelaskan bahwa variansi dalam masing-masing kelompok dianggap sama. Sedangkan asumsi bebas menjelaskan bahwa variansi masing-masing terhadap rata-ratanya pada setiap kelompok bersifat saling bebas. Analisis variansi adalah suatu prosedur untuk uji perbedaan mean beberapa populasi (lebih dari dua).
Hipotesis ANOVA satu arah

H0 : μ1= μ 2 = μ 3 = … = μ k
- Seluruh mean populasi adalah sama
- Tidak ada efek treatment ( tidak ada keragaman mean dalam grup )

H1 : tidak seluruhnya mean populasi adalah sama
- Terdapat sebuah efek treatment
- Tidak seluruh mean populasi berbeda ( beberapa pasang mungkin sama )
Partisi Variansi
Variansi total dapat dibagi menjadi 2 bagian :
SST = SSG + SSW
SST : Total sum of squares (jumlah kuadrat total) yaitu penyebaran agregat nilai data individu melalui beberapa level faktor .
SSG/SSB : Sum of squares between-grup (Jumlah kuadrat antara) yaitu penyebaran diantara mean sampel faktor .
SSW/SSE : Sum of squares within-grup (jumlah kuadrat dalam) yaitu penyebaran yang terdapat diantara nilai data dalam sebuah level faktor tertentu .
Rumus jumlah kuadarat total ( total sum of squares )
SST = SSG + SSW




Dimana :

SST : total sum of squares ( jumlah kadarat total )
k : levels of treatment ( jumlah populasi )
ni : ukuran sampel dari poplasi i
x ij : pengukuran ke-j dari populsi ke-i
x : mean keseluruhan ( dari seluruh nilai data )

Variansi total





Rumus untuk mencari variasi jumlah kuadrat dalam
 

Keterangan :
SSW/SSE : jumlah kuadrat dalam
k : levels of treatment ( jumlah populasi )
ni : ukuran sampel dari poplasi i
x ij : pengukuran ke-j dari populsi ke-i
x : mean keseluruhaN ( dari seluruh nilai data )

Rumus untuk mencari varisi diantara grup


Keterangan :
SSB/SSG : jumlah kuadrat diantara
k : levels of treatment ( jumlah populasi )
ni : ukuran sampel dari poplasi i
x ij : pengukuran ke-j dari populsi ke-i
x : mean keseluruhan ( dari seluruh nilai data )

Rumus variasi dalam kelompok

MSW =SSW/N-K

Dimana:
MSW  : Rata-rata variasi dalam kelompok
SSW   : jumlah kuadrat dalam
N-K    : derajat bebas dari SSW
Rumus variasi diantara kelompok

MSG = SSG/K-1
Dimana :
MSG/SSW  : Rata-rata variasi diantara kelompok
SSG            : jumlah kuadrat antara
k-1              : derajat bebas SSG

SUMBER : 
https://exponensial.wordpress.com/2010/01/01/anova-satu-arah-one-way-anova/

bab 7 PENGUJIAN HIPOTESIS




1.     Pengertian Hipotesis
Hipotesa berasal dari penggalan kata ”hypo” yang artinya ”di bawah” dan thesa” yang artinya ”kebenaran”, jadi hipotesa yang kemudian cara menulisnya disesuaikan dengan ejaan Bahasa Indonesia menjadi hipotesa dan berkembangan menjadi Hipotesa.
Hipotesis merupakan dugaan/ pernyataan sementara yang diungkapkan secara deklaratif/ yang menjadi jawaban dari sebuah permasalahan.  Pernyataan tersebut diformulasikan dalam bentuk variabel agar bisa di uji secara empiris. Hipotesis merupakan identik dari perkiraan atau prediksi. Dari sebuah hipotesis maka akan menimbulkan suatu prediksi, karena prediksi adalah hasil yang diharapkan diperoleh dari hipotesis. Hipotesis dapat diketahui jika telah melakukan suatu percobaan sehingga mengetahui hasilnya. Salah satu langkah dalam penelitian menggunakan metodo ilmiah adalah hipotesis. Seorang ilmuan/ peneliti haruslah mempunyai kemampuan untuk memprediksi suatu permasalahan. Mungkin anda sering mendengar mengenai perkiraan cuaca, perkiraan iklim yang sering disiarkan di televise ataupun di radio, di internet dan lain-lain. Itu dilakukan oleh para ahli meteorology, mereka dapat memprediksi/ memperkirakan cuaca yang akan terjadi di suatu daerah pada suatu hari dengan cara melakukan observasi menggunakan pengetahuan yang mereka miliki. Maka kemampuan memprediksi merupakan ketrampilan yang harus dimiliki oleh seorang ilmuan.

2.    Langkah Pengujian Hipotesis
Suatu hipotesis harus dapat diuji berdasarkan data empiris, yakni berdasarkan apa yang dapat diamati dan dapat diukur. Untuk itu peneliti harus mencari situasi empiris yang memberi data yang diperlukan. Setelah kita mengumpulkan data, selanjutnya kita harus menyimpulkan hipotesis , apakah harus menerima atau menolak hipotesis. Ada bahayanya seorang peneliti cenderung untuk menerima atau membenarkan hipotesisnya, karena ia dipengaruhi bias atau perasangka. Dengan menggunakan data kuantitatif yang diolah menurut ketentuan statistik dapat ditiadakan bias itu sedapat mungkin, jadi seorang peneliti harus jujur, jangan memanipulasi data, dan harus menjunjung tinggi penelitian sebagai usaha untuk mencari kebenaran. 

Adapun langkah-langkahnya adalah sebagai berikut :
  1. Nyatakan hipotetsis nolnya H0 bahwa q = qo ,
  2. Pilih hipotetsis alternative atau lawan hipotesis awal H1 yang sesuai q ¹ qo, q > q0 ,q < qo
  3. Tentukan taraf signifikan a.
  4. Pilih statistic uji yang digunakan apakah z, t, c2 , F atau lainnya.
  5. Tentukan wilayah ktitisnya atau daerah penolakan Ho
  6. Perhitungan nilai statistic uji berdasarkan sample.
  7. Kesimpulan, yaitu Keputusan antara tolak H0 atau terima Ho.

3.    Jenis-jenis Hipotesis
a.    Hipotesis deskriptif (pada satu sampel/variabel mandiri/tidak dibandingkan dan dihubungkan)
b.    Hipotesis komparatif
c.    Hipotesis hubungan

1.    Hipotesis Deskriptif
Hipotesis yang tidak membandingkan dan menghubungkan dengan variable lain atau hipotesis yang dirumuskan untuk menggambarkan suatu fenomena, atau untuk menjawab permasalahan taksiran.
Dalamperumusan hipotesis statistik, antara hipotesis nol (Ho) dan hipotesis alternatif (Ha) selalu berpasangan, bila salah satu ditolak, maka yang lain pasti diterima sehingga dapat dibuat keputusan yg tegas, yaitu kalau Ho ditolak, pasti Ha diterima.
-Contoh : Suatu bimbingan tes menyatakan bahwa murid yg dibimbing di lembaga itu paling sedikit 90% dapat diterima di Perguruan Tinggi Negeri. Rumusan hipotesis statistiknya :
Ho : µ ≥ 0,90
Ha : µ < 0,90
  
 2.    Hipotesis Komparatif
Hipotesis yang dirumuskan untuk memeberikan jawaban pada permasalahn yang bersifat membedakan atau membandingkan antara satu dengan data lainnya.
-Contoh :
Rumusan masalah komparatif : Apakah ada perbedaan produktifitas kerja antara pegawai golongan I, II, dan III?
Rumusan hipotesis : Tidak terdapat perbedaan (ada persamaan) produktifitas kerja antara pegawai golongan I, II, dan III.
Rumusan hipotesis statistiknya :
Ho : µ1 = µ2 = µ3
Ha : µ1 ≠ µ2 = µ3 (salah 1 berbeda merupakan Ha)
     3.    Hipotesis Asosiatif
Hipotesis yang dirumuskan untuk memberikan jawaban pada permasalahan yang bersifat hubungan / pengaruh. Sedangkan menurut sifat hubungannya hipotesis ini dibagi tiga jenis yaitu.
a.    Hipotesis hubungan simetris
Hipotesis yang menyatakan hubungan bersifat kebersamaan antara dua variable atau lebih tetapi tidak menunjukkan sebab akibat.
Contoh.
1.    Ada hubungan antara berpakaian mahal dengan penampilan
2.    Terdapat hubungan yang positif antara banyaknya peserta didik rajin belajar dengan tingkat intelegensi (IQ)

b.    Hipotesis hubungan sebab akibat (kausal)
Hipotesis yang menyatakan hubungan bersifat sebab akibat antara dua variable atau lebih
Contoh.
1.    Tingkat pengangguran berhubungan dengan tingkat kriminalitas
2.    Tingkat keberhasilan peserta didik bergantung pada cara belajar peserta didik itu sendiri

c.    Hipotesis hubungan interaktif
Hipotesis hubungan antara dua variable atau lebih bersifat saling mempengaruhi.
Contoh.
1.    Terdapat hubungan yang saling mempengaruhi antara status peserta didik sebagai anak pejabat dengan cara belajar peserta didik di sekolah.
2.    Terdapat pengaruh timbal balik antara kreativitas peserta didik dengan hasil belajar

Sumber :
http://iwan24.blogspot.com/
http://temukanpengertian.blogspot.com/2013/06/pengertian-hipotesis.html
Sugiyono.(2012).Statistika untuk Penelitian.Bandung:Alfabeta

Kamis, 17 April 2014

TUGAS STATISTIKA BAB 6


DISTRIBUSI NORMAL, DISTRIBUSI T, DISTRIBUSI F
   Distribusi Normal
Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang melebar tak berhingga pada kedua arah positif dan negatifnya. Penggunaanya sama dengan penggunaan kurva distribusi lainnya. Frekuensi relatif suatu variabel yang mengambil nilai antara dua titik pada sumbu datar. Tidak semua distribusi berbentuk lonceng setangkup merupakan distribusi normal.
Pada tahun 1733 DeMoivre menemukan persamaan matematika kurva normal yang menjadi dasar banyak teori statistika induktif. Distribusi normal sering pula disebut Distribusi Gauss untuk menghormati Gauss (1777 – 1855), yang juga menemukan persamaannya waktu meneliti galat dalam pengukuran yang berulang-ulang mengenai bahan yang sama.
Sifat dari variabel kontinu berbeda dengan variabel diskrit. Variabel kontinu mencakup semua bilangan, baik utuh maupun pecahan. Oleh karenanya tidak bisadipisahkan satu nilai dengan nilai yang lain. Itulah sebabnya fungsi variabel random kontinu sering disebut fungsi kepadatan, karena tidak ada ruang kosong diantara dua nilai tertentu. Dengan kata lain sesungguhnya keberadaan satu buah angka dalam variabel kontinu jika ditinjau dari seluruh nilai adalah sangat kecil, bahkan mendekati nol. Karena itu tidak bisa dicari probabilitas satu buah nilai dalam variabel kontinu, tetapi yang dapat dilakukan adalah mencari probabilitas diantara dua buah nilai. Distribusi kontinu mempunyai fungsi matematis tertentu. Jika fungsi matematis tersebut digambar, maka akan terbentuk kurva kepadatan dengan sifat sebagai berikut:
                        1. Probabilitas nilai x dalam variabel tersebut terletak dalam rentang antara 0 dan 1
                        2. Probabilitas total dari semua nilai x adalah sama dengan satu (sama dengan luas daerah
                            di bawah kurva)
                        Fungsi kepadatan merupakan dasar untuk mencari nilai probabilitas di antara dua nilai variabel. Probabilitas di antara dua nilai adalah luas daerah di bawah kurva di antara dua nilai dibandingkan dengan luas daerah total di bawah kurva. Dapat dicari luas daerah tersebut dengan menggunakan integral tertentu (definit integral).
                        Persamaan matematika distribusi peluang peubah normal kontinu bergantung pada dua parameter μ dan σ yaitu rataan dan simpangan baku. Jadi fungsi padat x akan dinyatakan dengan n (x; μ, σ).
Begitu μ dan σ diketahui maka seluruh kurva normal diketahui. Sebagai contoh, bila μ = 50 dan σ = 5, maka ordinat n(x ; 50, 5) dapat dengan mudah dihitung untuk berbagai harga x dan kurvanya dapat digambarkan. Kedua kurva bentuknya persis sama tapi titik tengahnya terletak di tempat yang berbeda di sepanjang sumbu datar.
Dengan memeriksa turunan pertama dan kedua dari n(x ; μ, σ) dapat diperoleh lima sifat kurva normal berikut :
                        1. Modus, titik pada sumbu datar yang memberikan maksimum kurva, terdapat pada x=μ
                        2. Kurva setangkup terhadap garis tegak yang melalui rataan μ
                        3. Kurva mempunyai titik belok pada x = μ σ, cekung dari bawah bila μ – σ < x < μ + σ,
                            dan cekung dari atas untuk harga x lainnya
                        4. Kedua ujung kurva normal mendekati asimtot sumbu datar bila harga x bergerak
                            menjauhi μ baik ke kiri maupun ke kanan
                        5. Seluruh luas di bawah kurva diatas sumbu datar sama dengan 1
Bila x menyatakan peubah acak distribusi maka P(x< x < x2) diberikan oleh daerah yang diarsir dengan garis yang turun dari kiri ke kanan. Jelas bahwa kedua daerah yang diarsir berlainan luasnya. Jadi, peluang yang berpadanan dengan masing-masing distribusi akan berlainan pula.
                         
Contoh soal :
Contoh Soal : Mawar adalah seorang peragawati yang akan diseleksi dengan tinggi badan 173 cm. Standar tinggi badan rata-rata peragawati adalah 171,8 dan standar deviasinya adalah 12. Berapakah standar normalnya (Z) ?
Penyelesaian :
Dik : x = 173, µ = 171,8, σ = 12
Dit : Z ?
Jawab : Z = x - µ
σ = 173 – 171.8 = 0.1
12
   DISTRIBUSI T
Adalah pengujian hipotesis yang menggunakan distribusi T sebagai uji statsistik, table pengujiannya disebut table T student. Distribusi T pertama kali diterbitkan tahu 1908 dalam suatu makalah oleh W.S. Gosset. Hasil uji statistiknya kemudian dibandingkan dengan nilai yang ada pada tabel kemudian menerima atau menolak hipotesis nol (Ho) yang dikemukakan. Cirinya : sample yang di uji berukuran kurang dari 30
Tabel Nilai t
df
α
0.05
0.025
0.01
0.005
1
6.314
12.706
31.821
63.657
2
2.920
4.303
6.965
9.925
3
2.353
3.182
4.541
5.841
4
2.132
2.776
3.747
4.604
5
2.015
2.571
3.365
4.032
6
1.943
2.447
3.143
3.707
7
1.895
2.365
2.998
3.499
8
1.860
2.306
2.896
3.355
9
1.833
2.262
2.821
3.250
10
1.812
2.228
2.764
3.169
11
1.796
2.201
2.718
3.106
12
1.782
2.179
2.681
3.055
13
1.771
2.160
2.650
3.012
14
1.761
2.145
2.624
2.977
15
1.753
2.131
2.602
2.947
16
1.746
2.120
2.583
2.921
17
1.740
2.110
2.567
2.898
18
1.734
2.101
2.552
2.878
19
1.729
2.093
2.539
2.861
20
1.725
2.086
2.528
2.845
21
1.721
2.080
2.518
2.831
22
1.717
2.074
2.508
2.819
23
1.714
2.069
2.500
2.807
24
1.711
2.064
2.492
2.797
25
1.708
2.060
2.485
2.787
26
1.706
2.056
2.479
2.779
27
1.703
2.052
2.473
2.771
28
1.701
2.048
2.467
2.763
29
1.699
2.045
2.462
2.756
30
1.697
2.042
2.457
2.750
40
1.684
2.021
2.423
2.704
50
1.676
2.009
2.403
2.678
100
1.660
1.984
2.364
2.626
10000
1.645
1.960
2.327
2.576
Uji t dikembangkan oleh William Sealy Gosset. Dalam artikel publikasinya, ia menggunakan nama samaran Student, sehingga kemudian metode pengujiannya dikenal dengan uji t-student. William Sealy Gosset menganggap bahwa untuk sampel kecil, nilai Z dari distribusi normal tidak begitu cocok. Oleh karenanya, ia kemudian mengembangkan distribusi lain yang mirip dengan distribusi normal, yang dikenal dengan distribusi t-student. Distribusi student ini berlaku baik untuk sampel kecil maupun sampel besar. Pada n ≥ 30, distribusi t ini mendekati distribusi normal dan pada n yang sangat besar, misalnya n=10000, nilai distribusi t sama persis dengan nilai distribusi normal (lihat tabel t pada df 10000 dan bandingkan dengan nilai Z).
Pemakaian uji t ini bervariasi. Uji ini bisa digunakan untuk objek studi yang berpasangan dan juga bisa untuk objek studi yang tidak berpasangan. Berikut contoh penggunaan uji t.
Uji t tidak berpasangan
Contoh kasus :
Kita ingin menguji dua jenis pupuk nitrogen terhadap hasil padi
1. Hipotesis
Ho : 1 =2
HA : 1 ≠ 2
2. Hasil penelitian tertera pada Tabel 1.
Tabel 1. Data hasil penelitian dua jenis pupuk nitrogen terhadap hasil padi (t/h)                          
Plot
Pupuk A 
Y1
Pupuk B 
Y2
1
7
8
2
6
6
3
5
7
4
6
8
5
5
6
6
4
6
7
4
7
8
6
7
9
6
8
10
7
7
11
6
6
12
5
7
3. Data analisis adalah sebagai berikut
Hitunglah
1            = 5.58
Y 2          = 6.92
S1           = 0.996
S2           = 0.793
thit        =( 1 – 2)/√(S12/n1) +(S22/n2)
=( 5.58 – 6.92)/√(0.9962/12)+(0.7932/12)
= -1.34/0.367522 = -3.67
Setelah itu, kita lihat nilai t table, sebagai nilai pembanding. Cara melihatnya adalah sebagai berikut. Pertama kita lihat kolom α = 0.025 pada Tabel 2. Nilai α ini berasal dari α 0.05 dibagi 2, karena hipotesis HA kita adalah hipotesis 2 arah (lihat hipotesis). Kemudian, kita lihat baris ke 22. Nilai 22 ini adalah nilai df, yaitu n1+n2-2. Nilai n adalah jumlah ulangan, yaitu masing 12 ulangan. Akhirnya, kita peroleh nilai ttable = 2.074.
table = t α/2 (df) = t0.05/2 (n1+n2-2)=t0.025(12+12-2) = t0.025(22) = 2.074
4. Kriteria Pengambilan Kesimpulan
Terima H0, jika thit| < t table, sebaliknya
Tolak H0, alias terima HA, jika thit| > t table
5. Kesimpulan
Karena nila thit|= 3.67 (tanda minus diabaikan) dan nilai ttable=2.074, maka kita tolak H0, alias kita terima HA. Dengan demikian, 1 ≠ 2, yaitu hasil padi yang dipupuk dengan pupuk A tidak sama dengan hasil padi yang dipupuk dengan pupuk B. Lebih lanjut, kita lihat bahwa rata-rata hasil padi yang dipupuk dengan pupuk B lebih tinggi daripada yang dipupuk dengan pupuk A. Dengan demikian, kita dapat menyimpulkan bahwa pupuk B nyata lebih baik daripada pupuk A untuk meningkatkan hasil.


DISTRIBUSI F

DISTRIBUSI  F
Distribusi ini juga mempunyai variabel acak yang kontinu. Fungsi identiatasnya mempunyai persamaan:
Dengan variabel acak F memenuhi batas F > 0, K = bilangan yang tetap harganya bergantung pada v1 dan v2 . sedemikian sehingga luas dibawah kurva sama dengan satu, v1= dk pembilang dan v2= dk penyebut.
Jadi distribusi F ini mempunyai dua buah derajat kebebasan. Grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti juga distribusi lainya, untuk keperluan penghitungan dengan distribusi F, daftar distribusi F telah disediakan seperti dapat ditemukan dalam lampiran , daftar 1. Daftar tersebut berisikan nilai-nilai F untuk peluang 0,01 dan 0,05 dengan derajat kebebasan v1 dan v2. Peluang ini sama dengan luas daerah ujung kanan yang diarsir, sedangkan dk=v1 ada pada baris paling atas dan dk=v2 pada kolom paling kiri.
Untuk tiap pasang dk,v1 dan v2,daftar berisikan harga-harga Fdengan luas kedua ini (0,01 atau 0,05)





Untuk tiap dk= v2, daftar terdiri atas dua baris, yang atas untuk peluang p=0,05 dan yang bawah untuk p=0,01.
Contoh: untuk pasangan derajat kebebasan v1=24 dan v2=8, ditulis juga(v1,v2)=(24,8), maka untuk p=0,05 didapat F =3,12 sedangkan untuk p=0,01 didapat F=5,28(lihat daftar1,lampiran). Ini didapat dengan jalan mencari 24 pada baris atas dan 8 pada kolom kiri. Jika dari 24 turun dan dari 8 ke kanan, maka didapat bilangan bilangat tersebut. Yang atas untuk p=0,05 dan yang bawahnya untuk p=0,01.
Notasi lengkap untuk nilai-nilai F dari daftar distribusi F dengan peluang p dan dk=(v1,v2) adalah Fp(v1,v2)
Demikian untuk contoh kita didapat
F0,05(24,8)=3,12 dan F0,01(24,8)=5,28
Meskipun daftar yang diberikan hanya untuk peluang p=0,01 dan p=0,05, tetapi sebenarnya masih bisa didapat nilai-nilai F dengan peluang 0,99 dan 0,95.
Untuk ini digunakan hubungan
Dalam rumus diatas perhatikan antara p dan (1-p)dan pertukaran antara derajat kebebasan (v1,v2) menjadi (v2,v1)
Contoh: telah didapat F0,05(24,8)=3,12
                makaF 0,95(8,24)= 0,321.

Sumber : http://new-funday.blogspot.com/2013/04/distribusi-normal-distribusi-t-uji-chi.html
Sumber : http://tulang-rusukku.blogspot.com/2012/04/distrbusi-f.html